

Semi-Supervised Learning for Fetal Brain MRI Quality Assessment with ROI consistency

Motivation

Fetal MRI and fetal motion in MRI

- Fetal motion is unpredictable and rapid
- Motion artifacts
- Intra-slice
- Inter-slice

Final goal:

Building a prospective motion correction in fetal MRI that can:

- Detect intra-slice motion artifact and reacquire those slices
- Track fetal motion [1] for inter-slice motion correction

This work:

- Image quality assessment for fetal MRI with CNN
- Online reacquisition for low-quality slices

Semi-supervised learning

- Difficult to get large labeled dataset
- Utilize large scale unlabeled dataset
- Mean teacher model [2]
- ROI consistency for fetal brain MRI

Junshen Xu, Sayeri Lala, Borjan Gagoski, Esra Abaci Turk, P. Ellen Grant, Polina Golland, Elfar Adalsteinsson Junshen@mit.edu

$$q = \frac{1}{|B|} \sum_{i \in B} A_i q_i, \qquad \sigma^2 = \frac{1}{|B|} \sum_{i \in B} A_i ||q_i - q||_2^2, \qquad r = \sigma + m_i$$
$$B = \{i | A_i \ge A_{\min}\}$$

bd	1000 labels	2000 labels	4000 labels	All labels
sed	75.58 ± 0.93	77.40 ± 0.68	79.33 ± 0.94	79.37 ± 0.38
4]	76.06 ± 2.18	77.51 ± 1.90	80.45 ± 2.35	81.25 ± 1.21
2]	79.27 ± 0.85	80.35 ± 0.56	81.21 ± 0.81	81.89 ± 0.63
ed	82.87 ± 0.92	83.73 ± 0.86	84.37 ± 0.37	85.19 ± 0.19
)	80.88 ± 1.07	81.38 ± 0.70	82.47 ± 0.42	82.88 ± 0.31
)	80.78 ± 0.66	82.01 ± 1.03	83.27 ± 0.34	83.81 ± 0.52
)	80.61 ± 0.26	80.92 ± 0.61	82.68 ± 0.53	83.77 ± 0.40
sed	0.788 ± 0.016	0.818 ± 0.012	0.826 ± 0.008	0.815 ± 0.012
4]	0.815 ± 0.021	0.822 ± 0.014	0.833 ± 0.017	0.844 ± 0.044
2]	0.831 ± 0.008	0.851 ± 0.005	0.856 ± 0.011	0.864 ± 0.006
ed	0.869 ± 0.008	0.881 ± 0.003	0.889 ± 0.007	0.899 ± 0.006
)	0.829 ± 0.007	0.822 ± 0.001	0.841 ± 0.011	0.854 ± 0.008
)	0.854 ± 0.006	0.872 ± 0.005	0.875 ± 0.004	0.887 ± 0.006
)	0.855 ± 0.009	0.860 ± 0.003	0.878 ± 0.006	0.882 ± 0.005