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What is PET
Positron emission tomography (PET) is a cutting-edge medical imaging technique in 

nuclear medicine with a wide range of clinical applications, including detection of cancer 

and tumor and early diagnosis of neuro diseases. To detect cell metabolism, radioactive 

tracers are used in PET imaging, which may increase the risk of over-exposure to 

radiation. 

Trade-off between dose reduction and image quality 
To minimize such risk, attempts have been made to lower injected dose in PET imaging. 

However, there is a trade-off between lowering dose and high image quality.

• Standard dose: higher risk and high-quality image 

• Low dose: lower risk and noisy image

Problems in existing methods
Some methods have been proposed for reconstructing standard dose PET images from 

low-dose data1,2. However, these methods are not without their problems.

• Time-consuming in reconstruction

• Dose reduction factor (DRF) not more than four

PET: Uses and Risks

Methods

Compared with Other Methods

To sum up, we proposed a multi-scale deep convolution network for ultra-low-dose PET  

reconstruction with advantages as follows

• Superior performance in low-dose PET denoising compared with state-of-the-art 

methods

• Reconstructing high-quality PET images with only 0.5% of  the regular dose

• Combining spatial information from adjoining PET slices and simultaneous MR scan 

to preserve local details and structure

• Enabling safer and more efficient PET scans.

Conclusions
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Quantitatively, MRI can improve the PSNR in 

PET reconstruction. 

Visually, model with MRI can Remove noise 

results from dose reduction while preserving 

local detail and contrast 

Compared with single-slice input, three-slice 

input provides significantly better PSNR. 

However, the improvement, by adding more 

than 3 slices, is not as significant, for slices 

far away from the center can only provide 

litter information.

Besides, Information from adjoining slices 

can help distinguish noise from the real 

structure.

Network architecture 
We use a fully convolutional neural network with the multi-scale encoder-decoder 

structure to extract features of different resolutions. Symmetric concatenate and residual 

connections are adopted in our network to avoid loss of high-resolution information.

Input
• Multi-slice PET: slices along z axis are 

stacked as different channels to employ 3D 

information in PET data for denoising.

• Multi-contrast MR: different contrasts are 

regarded as different input channels. 

Loss function
We use the L1 loss as loss function for it avoids splotchy artifact that results from traditional 

mean squared error loss.

Method
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Our method achieves higher PSNR
Results show that our method can achieve higher 

peak signal-to-noise ratio (PSNR) compared 

with state-of-the-art methods, indicating a better 

capability of denoising.

High-quality images can be produced with our model
Visual results show that image reconstructed by our method has the best image quality and 

it is the most similar to the standard-dose reference for the proposed model can not only 

remove the noise due to dose reduction but also preserve local detail in the image. Besides, 

our method can reconstruct the GBM tumor with the same shape as that of the reference, 

which is important for clinical diagnosis.

The proposed model is time efficient
With benefit from GPU acceleration and efficient encoder-decoder structure, the proposed 

method has the shortest prediction time (per image) among all the methods in our 

experiment.

Experiment setup
We compare our methods with other methods, 

including nonlocal means3 (NLM), block 

matching 3D4 (BM3D), and auto-context net5

(AC-Net), using leave-one-out cross validation. 

Results show that our proposed method has  

several advantages as follows.

GBM tumor (blue box in the figure on the left) 

Benefit from 3D PET Data

Contribution of MR to PET Denoising

Objective

Dataset
Data of six Glioblastoma (GBM) subjects were acquired on a PET/MRI system (SIGNA, 

GE Healthcare). Standard-dose PET data were collected and then randomly under-

sampled to simulate 200x low dose injection.

• Predicting standard dose PET images from ultra-low-dose images (DRF=200 or 

99.5% dose reduction)

• Using deep learning method 

• Combining information from Magnetic Resonance Imaging (MRI)

The overall structure of the proposed network. Arrows indicate different 

operations and each box means a tensor with number of channels labeled above


