Introduction

- We proposed a new direction of modeling image registration optimizer as a continuous optimization dynamics via neural ODEs.
- We introduced multi-scale architecture to neural ODEs to reduce searching space by performing registration iteratively on different scales.
- Our proposed method is a general learn-to-learn image registration framework and is not limited to specific transformations.
- Our framework can handle multiple contrasts with a single trained network attribute to proposed contrast-independent similarity metric for $n(\geq 2)$ modalities.

Methods

- Image registration is an optimization problem: $\operatorname{argmin} L(x_{a} \circ \phi_{\theta}, x_{b}) + R(\theta)$
- Solve with gradient descent based algorithms: $\partial(L+R)$

$$\theta_{t+1} = \theta_t - \eta_t \frac{\partial(D + R)}{\partial \theta_t} \triangleq \theta_t + f(\theta_t, t)$$

Consider the optimization process as a continuous flow in time:

$$\frac{d\theta_t}{dt} = f(\theta_t, t), t \in [0, T]$$

• Given the initial parameter θ_0 , the final parameter θ_T is the solution to this ODE initial value problem:

$$\theta_T = \theta_0 + \int_0^T f(\theta_t, t) dt$$

• We choose the following form of ODE:

$$\frac{d\theta_t}{dt} = f_w(x_a \circ \phi_{\theta_t}, x_b, t), t \in [0, T]$$

Multi-scale ODE

$$\frac{d\theta_t}{dt} = f_{w_l}^{(l)} \left(x_a^{(l)} \circ \phi_{\theta_t}, x_b^{(l)}, t \right), t \in \left[\frac{l-1}{L}T, \frac{l}{L}T \right]$$

- Multi-modal/contrast registration
- *M* different modality/contrast groups, $\{X_i\}_{i=1}^M$

•
$$x_a \in X_a, x_b \in X_b$$

- Modal-independent loss
 - Multimodal image translation with content and style feature disentanglement
 - Use the retrained content encoder E^{c} to extract modal-independent features

$$L_{\rm sim} = \mathbf{E}_{x_a, x_b, a, b} \left\| E^c \left(x_a \circ \phi_{\theta_T} \right) - E^c (x_b) \right\|_2^2$$

Multi-scale Neural ODEs for 3D Medical Image Registration

Junshen Xu, Eric Z. Chen, Xiao Chen, Terrence Chen, and Shanhui Sun Junshen@mit.edu

The image registration optimization is modeled as a neural ODE

Multi-scale neural ODE

Choices of network *f* for different transformations

- **Rigid/Affine:** convolution networks with fully connected layers
- **B-spline:** convolution networks with downsampling Dense motion field: UNet based
- networks

overview of the utilized image translation towards metric learning

Experiments

Dataset: BraTS 2020

- multi-modal 3D brain MRI
- Four distinctive contrasts: T1, T2, T2-FLAIR, and T1Gd
- 494 subjects with glioblastomas

Neural ODE solver

- Euler's method Adaptive Heun's method

Transformation

- Rigid
- Deformable • rigid + deformable

The modality-independent similarity metric is realized via a pretrained encoder

	Results					
i	Transformation	Methods	Dice/%	RMSE(<i>x</i>)	RMSE(ϕ)/mm	Time/s
		ANTs	63.0	8.34	7.28	17.17
	Rigid	ANTs+I2I	60.6	8.83	7.54	30.69
		MS-ODENet(R)	90.6	3.89	3.57	0.55
:	Deformable	ANTs	81.9	6.31	1.21	55.35
_!		ANTs+I2I	81.1	6.34	1.06	69.47
ric		VM	79.4	8.81	1.61	0.24
		VM+I2I	80.1	8.52	1.26	0.34
t_		MS-ODENet(D)	81.6	6.63	1.11	1.13
		MS-ODENet(B)	83.0	6.17	0.99	0.31
d -	Rigid + Deformable	ANTs	73.6	6.79	2.99	70.87
		ANTs+I2I	71.1	6.97	2.83	87.25
		RCN	64.9	8.74	5.48	2.49
		VM*	78.1	8.62	2.92	0.60
		VM*+121	78.4	7.07	2.04	1.01
		MS-ODENet(R+D)	79.6	6.70	1.82	1.39
		MS-ODENet(R+B)	81.1	6.28	1.52	0.56
	(a)	le−2 Dice mov	/ing	ANTs	ANTs+121	VM*
	82 - Dice / % 80 - 80 76 - 28 76 - 28 80.0 500 76 - 28 74 - 74	RMSE(x)				
				102		K
		RMSE	Faller .	Entre	En You	Set 1
						1 2 3
	72 -		183	AT 3	ETT BO	Y
	10	ice model				315
M10	(b)		+121 M	AS-ODENet(B)	MS-ODENet(D)	target
	90 -		2500			1272
	80 1.2 - 1.0 _×		63	STO 3		-YA
						21 + 3
		70 - Dice -▲- RMSE(x) - 0.8 Å				
	60 -					
	50 -	- 0.6		長人移		M.C
	5 10	15 20	fr tu	Ed PECT	Easterte	and the way
	# of step	S				

Conclusions

- We present a new framework for 3D multi-modal image registration.
- superior to other compared methods.
- medical registration such as 3D-2D image registration.

UNITED 联影 IMAGING

United Imaging Intelligence

Experiment results show that our proposed framework is For future work, we will extend our framework to other types of