

STRESS: Super-Resolution for Dynamic Fetal MRI using Self-Supervised Learning

Motivation

Dynamic fetal MRI and fetal motion

CSAIL

- Fetal motion is unpredictable and rapid
- Inter-slice motion artifacts
- Fast imaging, e.g., EPI \rightarrow low SNR / low resolution
- Ground truth high resolution data are unavailable

Slice-to-volume registration

- Reconstruct a static and motion-free volume
- Require multiple stacks at different orientations

Goals

- Super-resolution for dynamic fetal MRI (4D)
- Using the characteristic of interleaved slice acquisition
- Self supervised learning

Models	PSNR				SSIM		SI (22.30)	TI (22.36)	STI (24.23)
	$N_I = 2$	$N_I = 4$	$N_I = 6$	$N_I = 2$	$N_I = 4$	$N_I = 6$			
SI	28.42	22.98	19.39	.8849	.8114	.6686	z (USB) Baland		(JED)
TI	25.31	25.48	25.52	.8258	.8273	.8288	L → y		
STI	27.94	25.75	23.37	.8846	.8711	.8182			
SMORE [1]	30.38	28.57	24.27	.9006	.8916	.8093		TE	436.6
STRESS	33.51	32.81	28.24	.9702	.9655	.9213			The second second

Junshen Xu, Esra Abaci Turk, P. Ellen Grant, Polina Golland, Elfar Adalsteinsson Junshen@mit.edu

Experiments

Baseline methods

- Spatial Interpolation (SI)
- Temporal Interpolation (TI)
- Spatio-Temporal Interpolation
- (STI)
- SMORE [1]

Simulated data

- Fetal brain data [2]
- Simulated motion with real trajectories
- Different interleave parameters, N_I
- Simulated Rician noise

In utero fetal EPI data

- Multi-slice EPI time series [3]
- Evaluate with fetal pose estimation [4]

Conclusions

In super-resolution of dynamic fetal imaging, internal spatial information within each frame and temporal correlation between adjacent frames can be combined to improve image quality and restore details corrupted by fetal

References

[1] Zhao, C., et al. Smore: A self-supervised anti-aliasing and super-resolution algorithm for mri using deep learning. TMI

[2] Gholipour, A., et al. A normative spatiotemporal mri atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Scientific reports 7(1), 1–

[3] Luo, J., et al. In vivo quantification of placental insufficiency by bold mri: a human study. Scientific reports

[4] Xu, J., et al. Fetal pose estimation in volumetric mri using a 3d convolution neural network. MICCAI 2019