Introduction

3D reconstruction in fetal brain MRI

- slice misalignment
- volume transformations

Ideas

- by sharing information across different slices.
- for localizing slices in 3D space.
- progressively improve accuracy.

Results

	transformation		slice	
Method				
	ED (mm)	GD (rad)	PSNR	SSIM
SVRnet	12.82	0.256	20.53	0.823
PlaneInVol	12.49	0.244	19.96	0.808
SVoRT	4.35	0.074	25.26	0.916
w/o PE	9.97	0.194	21.44	0.841
w/o Vol	5.08	0.088	23.97	0.894
K=1	5.99	0.103	23.02	0.876
K=2	5.65	0.097	23.25	0.878

SVoRT: Iterative Transformer for Slice-to-Volume Registration in Fetal Brain MRI

Junshen Xu, Daniel Moyer, P. Ellen Grant, Polina Golland, Juan Eugenio Iglesias, Elfar Adalsteinsson Junshen@mit.edu

loss functions

Transformation Loss \mathcal{L}_T : L2 loss between the predicted and target anchor points (center, the bottom right and left corners of a plane)

Volume Loss \mathcal{L}_{χ} : L1 loss between the estimated and ground truth volumes **Total Loss**: $\mathcal{L} = \sum_{k=1}^{K} \mathcal{L}_{T}^{k} + \lambda \sum_{k=1}^{K} \mathcal{L}_{X}^{k}$

Labeling the 3D position of a slice is impossible

Simulate motion trajectories and sample 2D slices from high-quality MR volumes Data augmentation: MR artifacts, image noise, bias field, contrast jitter, etc.

Conclusion

By jointly processing the stacks of slices as a sequence, SVoRT registers each slice by utilizing context from other slices, resulting in lower registration error and better reconstruction quality.

Acknowledgements

This research was supported by NIH U01HD087211, R01EB01733, HD100009, NIBIB R01EB032708, NIBIB NAC P41EB015902, R01AG070988, RF1MH123195, ERC Starting Grant 677697, ARUK-IRG2019A-003.